next up previous
Next: Conclusion Up: One-loop approximation Previous: Calculations of .

Balance Equation

Consider the Dyson-Wyld equations (4.6) and (4.7) in the inertial interval, where one can neglect $ \gamma_0({\bf k}) $ in comparison with ${\rm Im} \Sigma({\bf k},\omega)$ and $D({\bf k}) $ in comparison with $\Phi ({\bf k},\omega )$:
$\displaystyle G({\bf k},\omega)$ $\textstyle =$ $\displaystyle \frac{1}{\omega-\omega_0({\bf k})
-\Sigma({\bf k},\omega)} \,,$ (97)
$\displaystyle n({\bf k},\omega)$ $\textstyle =$ $\displaystyle \vert G({\bf k},\omega)\vert^2 \Phi({\bf k},\omega) \ .$ (98)

It follows from (4.6) that
$\displaystyle {\rm Im}G({\bf k},\omega)=\vert G({\bf k},\omega)\vert^2{\rm Im}
\Sigma({\bf k},\omega).$     (99)

By comparing (4.36) with (4.37) one may see that the following combination
\begin{displaymath}
L({\bf k},\omega)\equiv \Phi({\bf k},\omega) {\rm Im}
G({\bf k},\omega) -n({\bf k},\omega){\rm Im}\Sigma({\bf k},\omega)
\end{displaymath} (100)

is equal to zero. In particular
\begin{displaymath}
L({\bf k})\equiv\int L({\bf k},\omega) \frac{d\omega}{2\pi}=0\ .
\end{displaymath} (101)

Together with (4.38) it gives
\begin{displaymath}
{\rm Im} \int \frac{d\omega}{2\pi}
\left[ \Phi({\bf k},\omeg...
...omega)
- n({\bf k},\omega)\Sigma({\bf k},\omega) \right]=0\ .
\end{displaymath} (102)

Let us compute now the first term in (4.40). By substitution Eq. (4.34) for $\Phi ({\bf k},\omega )$ and Eq. (4.11) and integration over $\omega$ one has
    $\displaystyle \int \frac{d\omega}{2\pi}G({\bf k},\omega)
\Phi({\bf k},\omega)=\int \frac{d{\bf k}_1 d {\bf k}_2}{(2\pi)^3}
n({\bf k}_1)n({\bf k}_2)$  
  $\textstyle \times$ $\displaystyle \Bigg[ \frac{1}{2}
\frac{\vert V({\bf k},{\bf k}_1,{\bf k}_2)\ver...
..._2)}
{\omega_0({\bf k})-\omega_0({\bf k}_1
)-\omega_0({\bf k}_2)-i\Gamma_{k12}}$  
  $\textstyle +$ $\displaystyle \frac{\vert V({\bf k}_2,{\bf k}_1,{\bf k})\vert^2
\delta({\bf k}+...
...a_0({\bf k})+\omega_0({\bf k}_1)-\omega_0({\bf k}_2)
-i\Gamma_{k12}} \Bigg]
\ .$ (103)

Next we will perform integration over $\omega$ in (4.40). Remember $\Sigma ({\bf k},\omega )$ is analytical function in the upper half plane of $\omega$ while $n({\bf
k},\omega)$ has one pole there. Therefore

\begin{displaymath}{\rm Im} \int \frac{d\omega}{2\pi} n({\bf k},
\omega)\Sigma({\bf k},\omega)=
n({\bf k}){\rm Im}\Sigma({\bf k},\omega_*)
\end{displaymath} (104)

where $\omega_*$ is given by (4.15). This is the justification of our choice $\omega_*$.

Now let us put everything together to obtain

    $\displaystyle 0=L({\bf k})=\int\frac{d{\bf k}_1 d{\bf k}_2}{(2\pi)^3}\Gamma_{k12}
\Bigg\{
\delta({\bf k}-{\bf k}_1-{\bf k}_2)$ (105)
  $\textstyle \times$ $\displaystyle \frac{1}{2}\frac{\vert V({\bf k},{\bf k}_1,{\bf k}_2)\vert^2
\lef...
...{(\omega_0({\bf k})-\omega_0({\bf k}_1)-\omega_0({\bf k}_2))^2
+\Gamma^2_{k12}}$  
  $\textstyle +$ $\displaystyle \delta({\bf k}+{\bf k}_1-{\bf k}_2)$  
  $\textstyle \times$ $\displaystyle \frac{\vert V({\bf k}_2,{\bf k}_1,{\bf k})\vert^2
\left[n({\bf k}...
...\bf k})+\omega_0({\bf k}_1
)-\omega_0({\bf k}_2))^2+\Gamma^2_{k12}}
\Bigg\} \ .$  

This is the main result of the diagrammatic approach: the balance equation for stationary in time acoustic turbulence. In nonstationary case one can get similarly the generalized kinetic equation in the form
\begin{displaymath}
{\partial n({\bf k}, t)\over \partial t}=L({\bf k}, t)
\end{displaymath} (106)

where $L({\bf k}, t)$ is given by Eq. (4.43) with correlator depending on time $n({\bf k}_j)\to n({\bf k}_j,t)$. In the limit $
\gamma ({\bf k}) \to 0$ this expression turns into well known (cf. [1]) collision integral for 3-wave kinetic equation
    $\displaystyle {\cal S}t\{n({\bf k}, t) \}=\lim_{\Gamma_{k12}\to 0}
L({\bf k}) =2\pi \int\frac{d{\bf k}_1 d{\bf k}_2}{(2\pi)^3}$  
  $\textstyle \times$ $\displaystyle \frac{1}{2}\delta({\bf k}-{\bf k}_1-{\bf k}_2) \vert V({\bf
k},{\bf k}_1,{\bf k}_2)\vert^2$  
    $\displaystyle \left\{n({\bf k}_1)n({\bf
k}_2)-n({\bf k})[n({\bf k}_1)+n({\bf k}_2)]\right\}$  
  $\textstyle \times$ $\displaystyle \delta [\omega_0({\bf k})-\omega_0({\bf k}_1)-\omega_0({\bf
k}_2)]$  
  $\textstyle +$ $\displaystyle \delta({\bf k}+{\bf k}_1-{\bf k}_2) \vert V({\bf k}_2,{\bf k}_1,{\bf
k})\vert^2$  
    $\displaystyle \left\{n({\bf k}_2)[n({\bf k}_1)+n({\bf k})]
-n({\bf k})n({\bf k}_1)\right\}$  
  $\textstyle \times$ $\displaystyle \delta [\omega_0({\bf k})+\omega_0({\bf k}_1)-\omega_0({\bf k}_2)] \ .$ (107)

We see that the generalized kinetic equation differs from the well known collision term in the three wave kinetic equation by replacing $\delta$-functions on the corresponding Lorenz function with the width of $\Gamma_{k12}$-triad interaction frequency.


next up previous
Next: Conclusion Up: One-loop approximation Previous: Calculations of .
Dr Yuri V Lvov 2007-01-17