next up previous
Next: Effective four-wave Hamiltonian Up: Five-wave interaction on the Previous: Conformal canonical variables

Perturbation expansion for the Hamiltonian

One can introduce new variable $\tilde x$ as

$\displaystyle x=u+\tilde x,\hspace{0.3cm} x_u = 1+\tilde x_u, \hspace{0.3cm}
\tilde x = -\hat Hz$      

Then
$\displaystyle \Psi = \frac{\mbox{$\cal P$}+ \mbox{$\cal P$}\tilde x_u + \hat H(\mbox{$\cal P$}z_u)}{(1+\tilde x_u)^2+z_u^2}$      

Now one can expand $\Psi$ in powers of $\tilde x_u$ and $z_u$

$\displaystyle \Psi$ $\textstyle =$ $\displaystyle \Psi^{(1)} + \Psi^{(2)} + \Psi^{(3)} + \Psi^{(4)} + \ldots \cr
\Psi^{(1)}$  

The Hamiltonian of the system is
$\displaystyle \mbox{$\cal H$}= \frac{1}{2} \int \{g z^2 (1+\tilde x_u) - \Psi \hat H\Psi_u\} du$      

Now $\mbox{$\cal H$}$ can be expanded as follow
$\displaystyle \mbox{$\cal H$}= \mbox{$\cal H$}_2 + \mbox{$\cal H$}_3 + \mbox{$\cal H$}_4 + \mbox{$\cal H$}_5 + \ldots$     (3.1)

here
$\displaystyle \mbox{$\cal H$}_2$ $\textstyle =$ $\displaystyle {1\over2}\int(g z^2 - \Psi^{(1)} \hat H\Psi^{(1)}_u) du \cr
\mbox{$\cal H$}_3$  

Let's introduce the Fourier transform:

\begin{displaymath}f_k = {1\over \sqrt{2\pi}} \int f(u) e^{-i k u} du,\hspace{1cm}
f(u) = {1\over \sqrt{2\pi}} \int f_k e^{i k u} dk\end{displaymath}

After simple, but a little bit tedious calculations one can find
$\displaystyle \mbox{$\cal H$}_2$ $\textstyle =$ $\displaystyle \frac{1}{2}\int (g \vert z_k\vert^2 + \vert k\vert\vert\mbox{$\cal P$}_k\vert^2) dk, \cr
\mbox{$\cal H$}_3$  

Here $S_{k_1 k_2 k_3}$, $F^{k_1}_{k_2 k_3}$, $M^{k_1 k_2}_{k_3 k_4}$ and $N^{k_1 k_2 k_3}_{k_4 k_5}$ are the functions symmetric inside of upper and lower groups of indices. Namely
$\displaystyle S_{k_1 k_2 k_3}$ $\textstyle =$ $\displaystyle {g\over 3}(\vert k_1\vert+\vert k_2\vert+\vert k_3\vert)\cr
L_{k_1 k_2}$ (3.2)

The expression for $M^{k_1 k_2}_{k_3 k_4}$ and $N^{k_1 k_2 k_3}_{k_4 k_5}$ are given in the Appendix A.

It is convenient to introduce a normal complex variable $a_k$

\begin{displaymath}\nonumber
y_k = \sqrt{\frac{\omega_k}{2g}}(a_k+a^*_{-k}) \hs...
...\mbox{$\cal P$}_k = -i\sqrt{\frac{2g}{\omega_k}}(a_k-a^*_{-k})
\end{displaymath}  

which satisfies the equation of motion
\begin{displaymath}\nonumber
\frac{\partial a_k}{\partial t} + i\frac{\delta \mbox{$\cal H$}}{\delta a_k^*}=0.
\end{displaymath}  

here $\omega_k = \sqrt{g\vert k\vert}$ -is the dispersion law for the gravity waves.

In the normal variable $a_k$ second order term in the Hamiltonian acquires the form:

$\displaystyle \mbox{$\cal H$}_2 = \int \omega_k a_k a_k^* dk$      

The third order term is:
$\displaystyle \mbox{$\cal H$}_3$ $\textstyle =$ $\displaystyle \frac{1}{2}\int\!V^{k_1}_{k_2 k_3}
\{a_{k_1}^* a_{k_2} a_{k_3}+a_{k_1} a_{k_2}^* a_{k_3}^*\}
\delta_{k_1-k_2-k_3}\!dk_1dk_2dk_3+\cr$  


$\displaystyle V^{k_1}_{k_2 k_3}$ $\textstyle =$ $\displaystyle \frac{g^{\frac{1}{4}}}{2\sqrt{4\pi}}
(\vert k_1\vert+\vert k_2\vert+\vert k_3\vert)\times\cr$  

Fourth order term in the Hamiltonian consists of three terms:
$\displaystyle \mbox{$\cal H$}_4 = \mbox{$\cal H$}_4^{4\Leftrightarrow 0} + \mbox{$\cal H$}_4^{3\Leftrightarrow 1} +
\mbox{$\cal H$}_4^{2\Leftrightarrow 2}$      

describing different types of the wave-wave interactions. The term corresponding to $4\Leftrightarrow 0$ interaction has a form:
$\displaystyle \mbox{$\cal H$}_4^{4\Leftrightarrow 0} = \frac{1}{24}\int$   $\displaystyle R_{k_1 k_2 k_3 k_4}
(a_{k_1}a_{k_2}a_{k_3}a_{k_4}+a_{k_1}^*a_{k_2}^*a_{k_3}^*a_{k_4}^*)\times\cr$  

where $R_{k_1 k_2 k_3 k_4}$ is:


$\displaystyle R_{k_1 k_2 k_3 k_4} =$ $\textstyle \frac{-1}{4\pi}$ $\displaystyle (
{\left\vert\frac{k_1 k_2}{k_3 k_4}\right\vert}^\frac{1}{4}M^{k_...
...ft\vert\frac{k_1 k_4}{k_2 k_3}\right\vert}^\frac{1}{4}M^{k_1 k_4}_{k_2 k_3}+\cr$  

Term corresponding to $3\Leftrightarrow 1$ interaction has a form:

$\displaystyle \mbox{$\cal H$}_4^{3\Leftrightarrow 1} = \frac{1}{6}\int$   $\displaystyle G^{k_1}_{k_2 k_3 k_4}
(a_{k_1}^*a_{k_2}a_{k_3}a_{k_4}+a_{k_1}a_{k_2}^*a_{k_3}^*a_{k_4}^*)\times\cr$  

where $G^{k_1}_{k_2 k_3 k_4}$:


$\displaystyle G^{k_1}_{k_2 k_3 k_4} =$ $\textstyle \frac{-1}{4\pi}$ $\displaystyle (
{\left\vert\frac{k_1 k_2}{k_3 k_4}\right\vert}^\frac{1}{4}M^{-k...
...t\vert\frac{k_1 k_4}{k_2 k_3}\right\vert}^\frac{1}{4}M^{-k_1 k_4}_{k_2 k_3}-\cr$  

Term corresponding to $2\Leftrightarrow 2$ interaction has a form:

$\displaystyle \mbox{$\cal H$}_4^{2\Leftrightarrow 2} = \frac{1}{4}\int W^{k_1 k...
... k_4}
a_{k_1}^*a_{k_2}^*a_{k_3}a_{k_4}
\delta_{k_1+k_2-k_3-k_4}dk_1dk_2dk_3dk_4$      

where $W^{k_1 k_2}_{k_3 k_4}$:


$\displaystyle W^{k_1 k_2}_{k_3 k_4} =$ $\textstyle \frac{-1}{4\pi}$ $\displaystyle (
{\left\vert\frac{k_1 k_2}{k_3 k_4}\right\vert}^\frac{1}{4}M^{-k...
...\vert\frac{k_1 k_4}{k_2 k_3}\right\vert}^\frac{1}{4}M^{-k_1 k_4}_{k_3 -k_2}-\cr$  

Among the different terms of the fifth order we consider only the term, corresponding to the process (1.6):

$\displaystyle \mbox{$\cal H$}_5 = \!\frac{1}{12}\int Q^{k_1 k_2 k_3}_{k_4 k_5}
...
...}^* a_{k_4} a_{k_5}+\!c.c.\}
\delta_{k_1+k_2+k_3-k_4-k_5}\!dk_1dk_2dk_3dk_4dk_5$      

where


$\displaystyle Q^{k_1 k_2 k_3}_{k_4 k_5}$ $\textstyle =$ $\displaystyle \frac{-3}{(4\pi)^{\frac{3}{2}}g^{\frac{1}{4}}}\times\{\cr$  


next up previous
Next: Effective four-wave Hamiltonian Up: Five-wave interaction on the Previous: Conformal canonical variables
Dr Yuri V Lvov 2007-01-17