next up previous
Next: Canonicity conditions for near-identity Up: Canonical Hamiltonians for waves Previous: Calculation of


Bogolyubov transformation of the $ O(\varepsilon )$ part

Here, we show how Bogolyubov transformation works on $ H_{f,\varepsilon }^{(1)}$ . We consider the terms of Eq. (72) starting with
  $\displaystyle -$ $\displaystyle \int\left[\check{a}(\textbf{x}\cdot\nabla_\textbf{x}\mu)\check{a}...
...nu)(\check{a}\check{a}_-+\check{a}^*\check{a}^*_-)\right]d\textbf{k}d\textbf{x}$  
$\displaystyle =$ $\displaystyle -$ $\displaystyle \int(ub +vb_-^*)(\textbf{x}\cdot\nabla_\textbf{x}\mu)(ub^*+vb_-)d...
..._\textbf{x}\nu)(u b + v b_-^*)(u b_- +v b^*) d\textbf{k}d\textbf{x}+c.c.\right]$  
$\displaystyle =$ $\displaystyle -$ $\displaystyle \int b \left[ (u^2+v^2)(\textbf{x}\cdot\nabla_\textbf{x}\mu_{ev})...
...d}) + 2uv(\textbf{x}\cdot\nabla_\textbf{x}\nu)\right]b^*d\textbf{k}d\textbf{x}-$  
    $\displaystyle ~~~-\int(u v (\textbf{x}\cdot\nabla_{\textbf{x}} \mu)+\frac{1}{2}...
... (\textbf{x}\cdot \nabla_\textbf{x}\nu))(b b_- +b^*b_-^*)d\textbf{k}d\textbf{x}$  
$\displaystyle =$   $\displaystyle \int\left[-b(\textbf{x}\cdot\nabla_{\textbf{x}} \omega)b^*+\frac{...
...\mu_{ev}^2}}\right)
\left(bb_- + b^* b_-^*\right)\right]d\textbf{k}d\textbf{x}.$ (92)

Here we used the following equalities
    $\displaystyle u^2+v^2=\cosh(2\xi),\ \ 2uv=\sinh(2\xi),\ \ u^2-v^2=1,$  
    $\displaystyle \sinh(2\xi)=\partial_{\nu}\omega,\ \ \cosh(2\xi)=\partial_{\mu_{ev}}\omega,\ \ 1=\partial_{\mu_{od}}\omega,$  
    $\displaystyle \sinh(2\xi)\nabla_\textbf{x}\mu_{ev}+\cosh(2\xi)\nabla_\textbf{x}\nu=-\frac{\mu_{ev}^2}{\nu}\nabla_\textbf{x}\sqrt{1-\frac{\nu^2}{\mu_{ev}^2}}.$ (93)

Next, we consider the terms of Eq. (72) with the Poisson bracket
    $\displaystyle \int i\check{a}\{\mu,\check{a}^*\}d\textbf{k}d\textbf{x}+\frac{1}...
...{\mu,\check{a}^*\}+\check{a}\{\nu,\check{a}_-\}\Big)d\textbf{k}d\textbf{x}+c.c.$  
    $\displaystyle =\frac{i}{2}\int(u b + v b_-^*)\Big(\{\mu,u b^* + v b_-\}+\{\nu,u b_- + v b^*\}\Big)d\textbf{k}d\textbf{x}+c.c.$ (94)

Note that Here, $ \nabla$ denotes a gradient either with respect to $ \textbf{x}$ or with respect to $ \textbf{k}$ . Now, let us consider (104) term by term.
  1. $ b\nabla b^*$ and $ b^*\nabla b$ :

        $\displaystyle \frac{i}{2}\int \left[u^2b\{\mu,b^*\}+\underbrace{v^2b_-^*\{\mu,b...
...f{k}\rightarrow-\textbf{k}$}}
+uvb\{\nu,b^*\}\right]d\textbf{x}d\textbf{k}+c.c.$  
        $\displaystyle =\frac{i}{2}\int \Big(b\{\omega ,b^*\}-b^*\{\omega ,b\}\Big)d\textbf{x}d\textbf{k}=i\int b\{\omega,b^*\}d\textbf{x}d\textbf{k}.$ (95)

    Here, we used the fact that $ \int b\{\omega ,b^*\}d\textbf{k}d\textbf{x}=-\int b^*\{\omega ,b\}d\textbf{k}d\textbf{x}$
  2. $ bb_-$ and $ b^*b_-^*$ :

        $\displaystyle \frac{i}{2}\int\left[ubb_-\{\mu,v\}+vb_-^*b^*\{\mu,u\}+\underbrac...
...v\}}_
{\mbox{give 0 because $\nu$\ is even}}\right]
d\textbf{k}d\textbf{x}+c.c.$  
        $\displaystyle =\frac{i}{2}\int\Big[(bb_--b^*b_-^*)(u\{\mu,v\}-v\{\mu,u\})\Big]d...
...\mu_{od},\xi\}}_{\mbox{only $\mu_{od}$\ survives}}\right]d\textbf{k}d\textbf{x}$  
        $\displaystyle =\frac{i}{2}\int\Big[(bb_--b^*b_-^*)\{\mu_{od},\xi\}\Big]d\textbf{k}d\textbf{x}$ (96)

    Here, we have used Eq. (101).
  3. $ b\nabla b_-$ and $ b^*\nabla b_-^*$ :

        $\displaystyle \frac{i}{2}\int\Big[uvb_-^*\{\mu,b^*\}+uvb\{\mu,b_-\}+u^2b\{\nu,b_-\}+v^2b_-^*\{\nu,b^*\}\Big]
d\textbf{k}d\textbf{x}+c.c.$  
        $\displaystyle =\frac{i}{2}\int\Big[b\sinh(2\xi)\{\mu_{ev},b_-\}+b\cosh(2\xi)\{\nu,b_-\}\Big]d\textbf{k}d\textbf{x}+c.c.$  
        $\displaystyle =\frac{i}{2}\int b \left[\frac{\mu_{ev}^2}{\nu}\left\{\sqrt{1-\frac{\nu^2}{\mu_{ev}^2}},b_-\right\}\right]d\textbf{k}d\textbf{x}+c.c.$ (97)

    We used Eq. (103) here.
Finally, the rest of $ O(\varepsilon )$ terms are
$\displaystyle \frac{i}{2}\int\tilde{\nu}aa_-d\textbf{k}d\textbf{x}+c.c.=\frac{i}{2}\int\tilde{\nu}bb_-d\textbf{k}d\textbf{x}+c.c.$     (98)

Combining Eqs. (102), (105), (106), (107), and (108), we obtain the $ O(\varepsilon )$ part of the Hamiltonian given by Eq. (83).
next up previous
Next: Canonicity conditions for near-identity Up: Canonical Hamiltonians for waves Previous: Calculation of
Dr Yuri V Lvov 2008-07-08