next up previous
Next: Near-identity transformation Up: Canonical Hamiltonians for waves Previous: Bogolyubov transformation of the


Canonicity conditions for near-identity transformation

Here, we obtain the canonicity conditions for the coefficients of the near-identity transformation (84). For the canonicity up to $ O(\varepsilon )$ order, we use the equation of motion in the Hamiltonian form.
$\displaystyle i\dot{b}_\textbf{k}=\frac{\delta H}{\delta b_\textbf{k}^*}.$     (99)

In this Appendix for simplicity of notation, we skip writing $ \textbf{x}$ in the subscript of the dynamical variables. Using Eq. (84), we obtain
$\displaystyle i\Big(\dot{c}_\textbf{k}+\alpha _\textbf{k}\dot{c}_{-\textbf{k}}^...
...extbf{k},\dot{c}_{-\textbf{k}}^*\}\Big)=\frac{\delta H}{\delta b_\textbf{k}^*}.$     (100)

Since we are neglecting terms of the order higher than $ O(\varepsilon )$ , we can use the following approximation
$\displaystyle \dot{c}_{-\textbf{k}}^*=i\frac{\delta H}{\delta c_{-\textbf{k}}}\approx i\omega_{-\textbf{k}}c_{-\textbf{k}}^*.$     (101)

Combining Eqs. (110) and (111), we obtain
$\displaystyle \frac{\delta H}{\delta b_\textbf{k}^*}=\frac{\delta H}{\delta c_\...
...\beta _\textbf{k}\{\gamma _\textbf{k},\omega _{-\textbf{k}}c_{-\textbf{k}}^*\}.$     (102)

Further, we have the chain rule in the form
$\displaystyle \frac{\delta H}{\delta c_\textbf{k}^*}=\int\left(\frac{\delta H}{...
...bf{q}}}
\frac{\delta b_{-\textbf{q}}}{\delta c_\textbf{k}^*}\right)d\textbf{q}.$     (103)

Using Eq. (84), we find
$\displaystyle \frac{\delta b_\textbf{q}^*}{\delta c_\textbf{k}^*}$ $\displaystyle =$ $\displaystyle \delta_\textbf{k}^\textbf{q},$  
$\displaystyle \frac{\delta b_{-\textbf{q}}}{\delta c_\textbf{k}^*}$ $\displaystyle =$ $\displaystyle \alpha_{-\textbf{q}}\delta_\textbf{k}^\textbf{q}-\beta_{-\textbf{q}}\{\gamma_{-\textbf{q}},\delta_\textbf{k}^\textbf{q}\}_\textbf{q},$  

where the subscript of the Poisson bracket indicates the differentiation with respect to $ \textbf{q}$ . Therefore, Eq. (113) becomes
$\displaystyle \frac{\delta H}{\delta c_\textbf{k}^*}=\frac{\delta H}{\delta b_\...
...tbf{k}},\beta_{-\textbf{k}}\omega _{-\textbf{k}}c_{-\textbf{k}}^*\}_\textbf{k}.$     (104)

Combining Eqs. (112) and (114), we find
$\displaystyle 0=-2\omega _{-\textbf{k}}c_{-\textbf{k}}^*\alpha_{od}-\beta _\tex...
...ma _{-\textbf{k}},\beta _{-\textbf{k}}\omega _{-\textbf{k}}c_{-\textbf{k}}^*\}.$     (105)

Finally, we obtain the canonicity conditions given in Eq. (85).
next up previous
Next: Near-identity transformation Up: Canonical Hamiltonians for waves Previous: Bogolyubov transformation of the
Dr Yuri V Lvov 2008-07-08