next up previous
Next: Relations between Wave Amplitudes Up: Hamiltonian Description of Acoustic Previous: Hamiltonian of Acoustic Turbulence

Canonical Equation of Motion

The Hamiltonian equations of motion (2.12) for the complex canonical variables $b\ b^*$ have standard form[1]
\begin{displaymath}
i{\partial b({\bf k},t)\over\partial t}
={\delta{\cal H}\over\delta
b^*({\bf k},t)} \ .
\end{displaymath} (43)

For the acoustic Hamiltonian (2.17-2.19), this equation takes the form
    $\displaystyle \Big[ i \frac{\partial}{\partial t}
- c k \Big] b({\bf k},t)$  
  $\textstyle =$ $\displaystyle \frac{1}{2}
\int V({\bf k},{\bf q},{\bf p})b({{\bf q}})b({{\bf p}})
\delta({\bf k}-{\bf q}-{\bf p})
\frac{d {\bf q} d {\bf p}}{(2\pi)^3}$ (44)
    $\displaystyle +\int V^*({\bf k},{\bf q},{\bf p})b({{\bf q}})^*b({{\bf p}})
\delta({\bf k}+{\bf q}-{\bf p})
\frac{d^3 {\bf q} d^3 {\bf p}}{(2\pi)^3}\ .$  

It is sometimes convenient to concentrate attention on steady state turbulence, which is convenient to describe in the $ {\bf k},\omega$ -representation. After performing a time Fourier transform, one has instead of (2.23),
    $\displaystyle \Big[ \omega - c k \Big]b ({\bf k},\omega)
=
\frac{1}{2} \int V({\bf k},{\bf k}_1,{\bf k}_2)$  
  $\textstyle \times$ $\displaystyle b_1 b_2 \delta({\bf k}-{\bf k}_1-{\bf k}_2)
\delta(\omega-\omega_1-\omega_2) \frac{d {\bf k}_1 d
\omega_1 d{\bf k}_2 d\omega _2}{(2\pi)^4}$  
  $\textstyle +$ $\displaystyle \int V^*({\bf k},{\bf k}_1,{\bf k}_2)b_1 ^*b_2
\delta({\bf k}+{\bf k}_1-{\bf k}_2)
\delta (\omega +\omega_1-\omega_2)$  
  $\textstyle \times$ $\displaystyle \frac{d {\bf k}_1 d\omega _1
d{\bf k}_2 d\omega _2}{(2\pi)^4} \ .$ (45)

Hereafter we will refer to this as the basic equation of motion for the acoustic turbulence normal variables $b_k,\ \ b^*_k$ and use it for a statistical description of acoustic turbulence.
next up previous
Next: Relations between Wave Amplitudes Up: Hamiltonian Description of Acoustic Previous: Hamiltonian of Acoustic Turbulence
Dr Yuri V Lvov 2007-01-17