next up previous
Next: Bibliography Up: Statistical Description of Acoustic Previous: Calculation of -details

Estimation of the two-loop diagrams.

Let us write down analytical expression which correspond to one of the diagrams (b) in Fig.1(b)
$\displaystyle \Sigma_b({\bf k},\omega)$   $\displaystyle = \int \frac{ d{\bf k_1} d {\bf k_2}
d\omega_1 d\omega_2} {(2\pi)^8} V_a V_b V_c V_d
n(k_1,\omega_1)n(k_2,\omega_2)$  
    $\displaystyle \times G({\bf k_1}+{\bf k_2},
\omega_1+\omega_2) G({\bf k}+{\bf k_1}+
{\bf k_2},\omega+\omega_1+\omega_2)$  
    $\displaystyle \times G({\bf k}+{\bf k},\omega+\omega_2)$ (128)

where $V_a, V_b, V_c, V_d$ are vertices,
$\displaystyle V_a=V({\bf k_1}+{\bf k_2}+{\bf k},{\bf k},{\bf k_1}+{\bf k_2}),$     (129)
$\displaystyle V_b=V({\bf k_1}+{\bf k_2}+{\bf k},{\bf k_1},{\bf k}+{\bf k_2}),$     (130)
$\displaystyle V_c=V({\bf k_2}+{\bf k},{\bf k_2},{\bf k}),$     (131)
$\displaystyle V_d=V({\bf k_1}+{\bf
k_2},{\bf k_1},{\bf k_2})$     (132)

We just followed the rules of DT and integrated over all delta-functions. From now, the analyses will be parallel to that of appendix B. Let us use (4.16) for $n(k,\omega)$ and (4.11) for $G(k,\omega)$. Now we can easily perform integration over $\omega_1$ and $\omega_2$. Now, as it was done in appendix B, introduce $\Sigma_b({\bf k})=\Sigma_b({\bf
k},\omega_*)$. Since all interacting wavevectors are almost parallel, we introduce two-dimensional vectors $\bf\kappa_1$ and $\bf\kappa_2$ such that
$\displaystyle {\bf k}_1=q_1 {\bf k} /k +{\bf\kappa_1 }\,, \qquad {\bbox \kappa_1
}\perp{\bf k}\ $     (133)
$\displaystyle {\bf k}_2=q_2 {\bf k} /k +{\bf\kappa_2 }\,, \qquad
{\bbox \kappa_2 }\perp{\bf k}\ $     (134)

We use $V({\bf k}, {\bf q},{\bf p}) =A\sqrt{k q p}$. Since $\kappa_i\ll k$, we can expand resonance denominators in (C1) with respect to $\kappa_i$. The integrals will be dominated by regions, where $q_i\ll k$. By putting everything together, one gets
$\displaystyle \Sigma_b({\bf k})\simeq
\int \frac{ \pi^2 d q_1 d q_2 d \kappa_1^2 d \kappa_2^2}{2\pi^6}
A^4 k^3 (q_1+q_2) q_1 q_2 \tilde n_{q_1} \tilde n_{q_2}$     (135)
$\displaystyle \left[ (\frac{c(\kappa_1^2+\kappa_2^2)}{2(q_1+q_2)}+
\Gamma_{q_1,...
...
(\frac{c}{2} \frac{\kappa_1^2}{q_1}+\frac{\kappa_2^2}{q_2}
+i\gamma_k)
\right.$      
$\displaystyle \left.
(\frac{c \kappa_2^2}{2 q_2}+ i \gamma_k)\right]^{-1}$     (136)

Substituting $\tilde n_q=n/q^{-9/2}$ we see, that indeed, the dominant part comes from the region of small $q_i$. We can estimate all these integrals to get
\begin{displaymath}\Sigma_b\simeq \frac{A^4 k^3 L^2 n^2}{c^2 \gamma_k}
\end{displaymath} (137)

where we used the small $q$ cutoff $1/L$. Finally
\begin{displaymath}
\frac{\Sigma_b}{\gamma_k}\simeq \frac{k^3 L^2 n^2}{\rho_0^2 \gamma_k^2}
\simeq\frac{1}{k L}\ll 1, \end{displaymath} (138)

and we conclude, that contribution from diagrams of type (b) on Fig.1(b) is much less, than contribution from one-loop diagrams. But this is not the end of the story. Let us try to estimate contributions from diagrams of type (e) on Fig.1(b). Following the same guidelines, we obtain
$\displaystyle \Sigma_e({\bf k})=$   $\displaystyle \int {\frac{d {\bf k_1} {\bf k_2}}{(2 \pi)^8}
A^4 k k_1 k_2 (k+k_1) (k+k_1+k_2)(k+k_2)
\tilde n_{k_1} \tilde n_{k_2}}$  
    $\displaystyle \times
\left[
(\omega_k+\omega_{k_1} -\omega_{k+k_1} + i\Gamma_{k,k_1,k+k_1})
\right.$  
    $\displaystyle \left.\times
(\omega_k+\omega_{k_1}+\omega_{k_2} -\omega_{k+k_1+k_2} +
i\Gamma_{k,k_1,k_2,k+k_1+k_2})
\right.$  
    $\displaystyle \times\left.
(\omega_k+\omega_{k_2} -\omega_{k+k_2} +
i\Gamma_{k,k_1,k+k_2})\right]^{-1}$  

Let us again introduce $\kappa_1$ and $\kappa_2$ as above, and substituting $\tilde n_q=n/q^{-9/2}$ we obtain the following estimation:
\begin{displaymath}\frac{\Sigma_e}{\gamma_k}\simeq
\frac{A^4 k^4 n^2 L^3}{\gamma_k^2 c^2 }\simeq 1 \end{displaymath} (139)

Therefore we conclude, that contribution from two loop diagrams is dominated by planar diagrams and of the order of one loop diagrams contribution.


next up previous
Next: Bibliography Up: Statistical Description of Acoustic Previous: Calculation of -details
Dr Yuri V Lvov 2007-01-17