next up previous
Next: Appendix Up: Appendix Previous: Appendix

4th and 5th-order terms of the Hamiltonian

First part of $\mbox{$\cal H$}_4$ is

$\displaystyle {\mbox{$\cal H$}_4}^{1st}$ $\textstyle =$ $\displaystyle -{1\over 2} \int 2\mbox{$\cal \Psi$}^{(3)} H{\mbox{$\cal \Psi$}^{(1)}}^\prime du =\cr$  

Second part of $\mbox{$\cal H$}_4$ is

$\displaystyle {\mbox{$\cal H$}_4}^{2nd}$ $\textstyle =$ $\displaystyle -{1\over 2} \int \mbox{$\cal \Psi$}^{(2)} H{\mbox{$\cal \Psi$}^{(2)}}^\prime du =\cr$  

In the $k$-space it acquires the form:
$\displaystyle {\mbox{$\cal H$}_4}^{2nd} =$ $\textstyle \frac{1}{4\pi}$ $\displaystyle \int
\{(\vert k_1 k_2\vert-k_1 k_2) \vert k_2+k_4\vert + (\vert k_1\vert k_2 - k_1 \vert k_2\vert) (k_2+k_4)\}\times\cr$ (1.1)

First part of $\mbox{$\cal H$}_5$ is

$\displaystyle {\mbox{$\cal H$}_5}^{1st} = -$ $\textstyle \int$ $\displaystyle \mbox{$\cal \Psi$}^{(4)} H{\mbox{$\cal \Psi$}^{(1)}}^\prime du =\cr
\frac{-1}{(2\pi)^{3\over 2}}$  

Second part of $\mbox{$\cal H$}_5$ is

$\displaystyle {\mbox{$\cal H$}_5}^{2nd} = -$ $\textstyle \int$ $\displaystyle \mbox{$\cal \Psi$}^{(3)} H{\mbox{$\cal \Psi$}^{(2)}}^\prime du =\cr$  

Hamiltonian can be written in symmetrical form:

$\displaystyle \mbox{$\cal H$}= \frac{1}{2}$ $\textstyle \int$ $\displaystyle (g \vert z_k\vert^2 + \vert k\vert\vert\mbox{$\cal P$}_k\vert^2) dk +\cr
+\frac{1}{2\sqrt{2\pi}}$  

where $S_{k_1 k_2 k_3}$, $L_{k_1 k_2}$ and $F^{k_1}_{k_2 k_3}$ are defined in (3.2), and
$\displaystyle M^{k_1 k_2}_{k_3 k_4}$ $\textstyle =$ $\displaystyle (\vert k_3\vert+\vert k_4\vert)(k_1 k_2 +\vert k_1 k_2\vert) +\cr$  


$\displaystyle N^{k_1 k_2 k_3}_{k_4 k_5}$ $\textstyle =$ $\displaystyle \cr$  


next up previous
Next: Appendix Up: Appendix Previous: Appendix
Dr Yuri V Lvov 2007-01-17