next up previous
Next: Bibliography Up: Interactions of renormalized waves Previous: Conclusions


Limiting behaviors of $ \eta $ for the thermalized $ \beta $-FPU chain

We change variables $ y_j=q_j-q_{j+1}$ in the Hamiltonian (29) for $ \beta $-FPU to obtain
$\displaystyle H(p,y)=\sum_{j=1}^N\left[\frac{1}{2}p_j^2+\frac{1}{2}y_j^2+\frac{\beta}{4}y_j^4\right].$     (74)

Next, we compute the pdf's for the momentum and displacement. Any $ p_j$ is distributed with the Gaussian pdf $ z_p=C_p\exp(-{\theta }^{-1}p^2/2)$ and any $ y_j$ is distributed with the pdf $ z_y=C_y\exp(-{\theta }^{-1}(y^2+\beta y^4/2)/2)$, where $ C_p$ and $ C_y$ are the normalizing constants. As we have discussed, the renormalization factor $ \eta $ of the $ \beta $-FPU system in thermal equilibrium is given by Eq. (25), and its approximation via the self-consistency argument $ \eta _{sc}$ is given by Eq. (52). Here, we compare the behavior of both formulas in two limiting cases, i.e., the case of small nonlinearity $ \beta\rightarrow
0$ and the case of strong nonlinearity $ \beta\rightarrow\infty$. We will use the following expressions for the average density of kinetic, quadratic potential and quartic potential parts of the total energy of the system
$\displaystyle \frac{\langle K\rangle }{N}$ $\displaystyle =$ $\displaystyle \frac{1}{N}\sum_{j=1}^N\frac{\langle p_j^2\rangle }{2}=\frac{1}{2}\theta ,$ (75)
$\displaystyle \frac{\langle U\rangle }{N}$ $\displaystyle =$ $\displaystyle \frac{1}{N}\sum_{j=1}^N\frac{\langle y_j^2\rangle }{2}=\frac{1}{2}\langle y^2\rangle ,$ (76)
$\displaystyle \frac{\langle V\rangle }{N}$ $\displaystyle =$ $\displaystyle \frac{\beta}{4N}\sum_{j=1}^N\langle
y_j^4\rangle =\frac{\beta}{4}\langle y^4\rangle .$ (77)

In a canonical ensemble, the temperature of a system is given by the temperature of the heat bath. By identifying the average energy density of the system with $ \bar{e}=E/N$ in our simulation (a microcanonical ensemble), we can determine $ \theta $ as a function of $ \bar{e}$ and $ \beta $ by the following equation
$\displaystyle \frac{1}{N}\big(\langle
K\rangle +\langle U\rangle +\langle V\rangle \big)=\bar{e}.$     (78)

We start with the case of small nonlinearity $ \beta\rightarrow
0$. Suppose in the first order of the small parameter $ \beta $ the temperature has the following form
$\displaystyle \theta (\beta)=\theta _0+\beta \theta _1,$     (79)

where $ \theta _0=O(1)$ and $ \theta _1=O(1)$. We find the values of $ \theta _0$ and $ \theta _1$ using the constraint (A5). We use the following expansions in the small parameter $ \beta $
    $\displaystyle \int_{-\infty}^{\infty}e^{-\frac{1}{2\theta (\beta)}(y^2+\beta\frac{y^4}{2})}~dy$  
    $\displaystyle =\sqrt\frac{\pi}{8}\sqrt{\theta _0}\left(4+\Big(\frac{2\theta _1}{\theta _0}-3\theta _0\Big)\beta\right)+O(\beta^2),$ (80)


    $\displaystyle \int_{-\infty}^{\infty}y^2e^{-\frac{1}{2\theta (\beta)}(y^2+\beta\frac{y^4}{2})}~dy$  
    $\displaystyle =\sqrt\frac{\pi}{8}\sqrt{\theta _0}\left(4\theta _0+(6\theta _1-15\theta _0^2)\beta\right)+O(\beta^2),$ (81)


    $\displaystyle \int_{-\infty}^{\infty}(y^2+\frac{\beta}{2}y^4)e^{-\frac{1}{2\theta (\beta)}(y^2+\beta\frac{y^4}{2})}~dy$  
    $\displaystyle =\sqrt\frac{\pi}{8}\sqrt{\theta _0}\left(4\theta _0+(6\theta _1-9\theta _0^2)\beta\right)+O(\beta^2).$ (82)

Then, in the first order in $ \beta $, Eq. (A5) becomes
    $\displaystyle \theta _0+\beta
\theta _1+\frac{\sqrt\frac{\pi}{8}\sqrt{\theta _0...
...eft(4+
\Big(\frac{2\theta _1}{\theta _0}-3\theta _0\Big)\beta\right)}=2\bar{e},$  

and we obtain $ \theta _0=\bar{e}$ and $ \theta _1=(3/4)\bar{e}^2$. Therefore, for the average kinetic energy density, we have
$\displaystyle \frac{\langle
K\rangle }{N}=\frac{1}{2}\bar{e}+\frac{3}{8}\bar{e}^2\beta+O(\beta^2),$     (83)

and, for the average quadratic potential energy density, we have
$\displaystyle \frac{\langle U\rangle }{N}$ $\displaystyle =$ $\displaystyle \frac{1}{2}\frac{\sqrt\frac{\pi}{8}\sqrt{\theta _0}\left(4\theta ...
...heta _0}
\left(4+\Big(\frac{2\theta _1}{\theta _0}-3\theta _0\Big)\beta\right)}$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\bar{e}-\frac{9}{8}\bar{e}^2\beta+O(\beta^2).$ (84)

Finally, we obtain Eq. (53), i.e., for small $ \beta $
$\displaystyle \eta=1+\frac{3}{2}\bar{e}\beta+O(\beta^2).$     (85)

Similarly, from Eq. (52), we find the small $ \beta $ limit of the approximation $ \eta _{sc}$
$\displaystyle \eta_{sc}=1+\frac{3}{2}\bar{e}\beta+O(\beta^2).$      

Now, we consider the case of strong nonlinearity $ \beta\rightarrow\infty$. From Eq. (A5), we conclude that temperature in the large $ \beta $ limit, which we denote as $ \theta_{\infty}$, stays bounded, i.e., $ 0<\theta_{\infty}<2\bar{e}, $ and, in the limit of large $ \beta $, we obtain for Eq. (A5)
$\displaystyle \theta_{\infty}+\frac{\int_{-\infty}^{\infty}\frac{\beta}{2}y^4e^...
...dy}{\int_{-\infty}^{\infty}e^{-\frac{\beta}{4\theta_{\infty}}y^4}~dy}=2\bar{e}.$     (86)

After performing the integration, we obtain $ \theta_{\infty}=(4/3)\bar{e}, $ and the average kinetic energy density becomes $ \langle K\rangle /N=(2/3)\bar{e}$. For the average quadratic potential energy density, we have
$\displaystyle \frac{\langle U\rangle }{N}=\frac{1}{2}\frac{\int_{-\infty}^{\inf...
...{3}{4})}{\Gamma(\frac{1}{4})}\left(\frac{4\bar{e}}{3\beta}\right)^{\frac{1}{2}}$     (87)

For the renormalization factor, we obtain the following large $ \beta $ scaling
$\displaystyle \eta=\sqrt{\frac{\Gamma(\frac{3}{4})}{\sqrt{3}\Gamma(\frac{1}{4})}}\bar{e}^\frac{1}{4}\beta^\frac{1}{4}.$     (88)

Similarly, for the approximation of $ \eta _{sc}$, we obtain $ A=C\sqrt{\bar{e}\beta}$, $ B=4\bar{e}\beta$, and $ C=2\sqrt{3}\Gamma(3/4)/\Gamma(1/4)$. Therefore, the large $ \beta $ scaling of $ \eta _{sc}$ becomes
$\displaystyle \eta_{sc}=\sqrt{\frac{C+\sqrt{C^2+16}}{2}}\bar{e}^\frac{1}{4}\beta^\frac{1}{4},$     (89)

which yields Eq. (54).
next up previous
Next: Bibliography Up: Interactions of renormalized waves Previous: Conclusions
Dr Yuri V Lvov 2007-04-11