next up previous
Next: Weak turbulence for inhomogeneous Up: text Previous: Unified WKB description

Weakly nonlinear GP equation

The derivation for the description of the nonuniform turbulence found in a BEC system consists of a amalgamation of a WKB method, for the description of the linear dynamics, and a standard weak turbulence theory (see e.g. [13]), with the noted modification that Gabor transforms are used instead of Fourier ones. We will now demonstrate the general ideas of such a derivation for the simple case of system where no condensate is present.

Consider the Gabor transformation of ([*]):

$\displaystyle i \partial_{t} \hat \psi + \triangle \hat \psi 
 - \widehat{\vert\psi\vert^{2}\psi} 
 - U\hat\psi
 + i {\bf } (\nabla_x U)\nabla_k\hat{\psi}
 = 0.$ (22)

To calculate the $ \widehat{\vert\psi\vert^{2}\psi}$ term let us first separate the Gabor transform into its correspondingly fast and slow spatial parts,

$\displaystyle \hat\psi(\vec{x},\vec{k},t) = \underbrace{a(\vec{x},\vec{k},t)}_{\mbox{slow}} 
 \underbrace{e^{i{\vec k} \cdot {\vec x}}}_{\mbox{fast}}.$ (23)

Now by using the inverse Gabor transform

$\displaystyle g(x,t)= \int \hat{g}(\vec{x},\vec{k},t) \, d {\vec k},$ (24)

we find

$\displaystyle \widehat{\vert\psi\vert^{2}\psi} = e^{i {\vec k} \cdot {\vec x}} \int f$ $\displaystyle (\vec x-\vec x_0) \, e^{i \vec x_0
 \cdot (\vec k_3+ \vec k_2- \vec k_1- \vec k)}$    
  $\displaystyle \times a^*(\vec k_1, \vec x_0)
 a(\vec k_2, \vec x_0)a(\vec k_3, \vec x_0) \, d {\vec x_0} d {\vec k_1} d
 {\vec k_2} d {\vec k_3}.$    
  (25)

Note that the slow amplitudes $ a$ do not change much over the characteristic width of the function $ f$ and hence their argument $ {\vec{x_0}}$ can be replaced by $ {\vec{x}}$. Therefore, we can approximate ([*]) by

$\displaystyle \widehat{\vert\psi\vert^{2}\psi} \simeq 
 \frac{e^{i {\vec k} \cdot {\vec x}}}{(2 \pi)^{3 d/2}} \int 
 F$ $\displaystyle (\vec k_3+\vec k_2-\vec k_1-\vec k)$    
  $\displaystyle \times a^*(\vec k_1,\vec x) a(\vec k_2,\vec x)a(\vec k_3,\vec x) 
 \, d {\vec k_1} d {\vec k_2} d {\vec k_3}.$    
  (26)

Here $ F(\vec k)$ is the Fourier transform of $ f(\vec x)$. Note that for the spatially homogeneous systems, $ \epsilon^*\to 0$, $ F(\vec k)$ is just a delta function,

$\displaystyle \lim\limits_{ \epsilon^*\to 0}F(\vec k)\to \delta(\vec k).$

After dropping terms proportional to $ \triangle a$, equation ([*]) then becomes

$\displaystyle \partial_{t} a(\vec k,\vec x) = - 2 \vec k\cdot \nabla$ $\displaystyle a(\vec k,\vec x)$    
$\displaystyle - i(k^2 +\vec k\cdot(\nabla_x ))$ $\displaystyle a(\vec k,\vec x)
 - (\nabla_x U) (\nabla_k a(\vec k,\vec x))$    
$\displaystyle - \int F(\vec k_3 + \vec k_2$ $\displaystyle - \vec k_1 - \vec k) 
 \,a^*(\vec k_1,\vec x) a(\vec k_2,\vec x) a(\vec k_3,\vec x) 
 \,d {\vec k_1} d {\vec k_2} d {\vec k_3}.$    
  (27)

This is the master equation formulating the nonlinear dynamics in terms of the Gabor amplitudes. This can serve as a starting point for the statistical averaging which in turn leads to the weak turbulence formalism. Note that this equation can be written in Hamiltonian form,

$\displaystyle i \frac{\partial}{\partial t} a_{{\bf k},{\bf x}}=
 \frac{\delta H} {\delta a_{{\bf x},{\bf k}}^*},$ (28)

with a Hamiltonian function

$\displaystyle H = \int 
 ( \omega_{k,x} - {\bf x} \cdot$ $\displaystyle \nabla_x \omega_{k,x} ) \vert a_{k,x}\vert^2$    
$\displaystyle + \frac{i}{2} (\nabla_x$ $\displaystyle \omega_{k,x})
 ( a_{k,x}^{*}\nabla_{k}a_{k,x} - a_{k,x}\nabla_{k}a^{*}_{k,x} )$    
$\displaystyle + \frac{i}{2}$ $\displaystyle (\nabla_k \omega_{k,x}) 
 ( a_{k,x}\nabla_{x}a_{k,x}^{*} - a_{k,x}^{*}\nabla_{x}a_{k,x} ) 
 \, d {\bf k} d {\bf x}$    
$\displaystyle + \int 
 F({\bf k_3} + {\bf k_2}$ $\displaystyle - {\bf k_1} - {\bf k})$    
$\displaystyle a^{*}({\bf k_1}$ $\displaystyle ,{\bf x}) a({\bf k_2},{\bf x}) 
 a({\bf k_3},{\bf x}) a({\bf k_4},{\bf x}) 
 \, d {\vec k_1} d {\vec k_2} d {\vec k_3} d {\vec k_4},$    
  (29)

where $ \omega_{k,x}= k^2 + U(x)$. In fact, such a Hamiltonian description can be derived directly, in terms of the Gabor amplitudes, from the Hamiltonian formulation of the original GP equation (see Appendix B).

If a condensate is present in the system, one can also re-write the equations in a Hamiltonian form with an identical quadratic part. That is, with $ a$ being replaced by the normal amplitude, and $ \omega$ by the frequency of waves, found in the presence of the condensate. It appears that the quadratic part of the Hamiltonian ([*]) is generic in the WKB context. Indeed, let us consider a typical Hamiltonian for linear waves in weakly inhomogeneous media [32] expressed in terms of Fourier amplitudes $ a_{\bf q_1}$ and $ a^*_{\bf q_1}$

$\displaystyle {\cal H}=\int\Omega({\bf q_1}, {\bf q}) \, a_{\bf q_1} a^*_{\bf q_1}
\, d {\bf q} d {\bf q_1},$     (30)

with a hermitian kernel $ \Omega({\bf q_1}, {\bf q})= \Omega({\bf q},
{\bf q_1})$ which is strongly peaked at $ {\bf q}- {\bf q_1} =0 $. As we will show in a separate paper [26], this Hamiltonian can be represented in terms of the Gabor transforms as

$\displaystyle H = \int ( \omega_{\vec k,\vec x} - {\bf x} \cdot$ $\displaystyle \nabla_x \omega_{\vec k,\vec x}
 ) \vert a_{k,x}\vert^2$    
$\displaystyle + \frac{i}{2} (\nabla_x$ $\displaystyle \omega_{\vec k,\vec x} ) ( a_{k,x}^*\nabla_{k}a_{k,x} -
 a_{k,x}\nabla_{k}a^*_{k,x} )$    
$\displaystyle + \frac{i}{2}$ $\displaystyle (
 \nabla_k \omega_{\vec k,\vec x} ) ( a_{k,x}\nabla_{x}a_{k,x}^* -
 a_{k,x}^*\nabla_{x}a_{k,x} ) \, d {\bf k} d {\bf x},$ (31)

where $ a_{k x}$ are the Gabor coefficients, and $ \omega_{\vec k\vec x}$ is the position dependent frequency, related to $ \Omega({\bf q}, {\bf
q_1})$ via
$\displaystyle \omega_{\vec k,\vec x}=\int e^{- 2 i \vec q\cdot\vec x} \, \Omega(\vec k,\vec k+2\vec q) \,
d \vec q.$     (32)

Actually, such an expression is a canonical form, even for a much broader class of Hamiltonians that correspond to a significant class of linear equations with coordinate dependent coefficients [26]. That is,
$\displaystyle {\cal H}=\int [A({\bf q_1}, {\bf q}) \, a_{\bf q_1} a^*_{\bf q}
\...
...\bf q_1}, {\bf q}) \, a_{\bf q_1} a_{\bf - q} + c.c.] \, d
{\bf q} d {\bf q_1},$     (33)

where functions $ A$ and $ B$ peaked at $ {\bf q}- {\bf q_1} =0 $.


next up previous
Next: Weak turbulence for inhomogeneous Up: text Previous: Unified WKB description
Dr Yuri V Lvov 2007-01-23