Beams

A physically natural quadratic nonlinearity for thin elastic structures arises from **geometric nonlinearities** due to stretching of the midplane when the deflections are moderate but not infinitesimal. For a one-dimensional beam, the lowest-order nonlinear contribution to the bending strain can be expressed as the derivative of the squared slope:

$\displaystyle \frac{\partial}{\partial x}\,(u_x^2) = (u_x^2)_x,
$

where $u(x,t)$ is the transverse displacement. This term is **quadratic in the amplitude** and represents the nonlinear coupling between curvature and slope, producing energy transfer between modes.

In two dimensions, for a thin plate or membrane $u(x,y,t)$, the corresponding geometric quadratic nonlinearity involves both spatial directions and can be written as

$\displaystyle \frac{\partial}{\partial x}\big(u_x^2\big) + \frac{\partial}{\partial y}\big(u_y^2\big) = (u_x^2)_x + (u_y^2)_y,
$

where $u_x = \partial u / \partial x$ and $u_y = \partial u / \partial y$. Physically, this term captures the stretching of the midplane in both directions, generating **mode interactions in 2D** and allowing the transfer of energy among different linear eigenmodes of the plate. It is a minimal quadratic model that retains the essential physics of **triad resonances, amplitude-dependent frequency shifts, and nonlinear wave propagation** while remaining analytically tractable.

Introducing a physically natural quadratic nonlinearity of the form u u_xx + u u_yy, the full nonlinear plate equation reads:

$\displaystyle \boxed{
u_{tt} + u_{xxxx} + u_{yyyy} + \varepsilon \left( u\, u_{...
...) = 0,
\quad (x,y) \in \Omega \subset \mathbb{R}^2, \quad \varepsilon \ll 1,
}
$

where &epsiv#varepsilon; is a small parameter controlling the strength of the nonlinearity.

$\displaystyle H =
\int \left[
\frac{1}{2}\,u_t^2
+ \frac{1}{2}\left(u_{xx}^2 + ...
...2\right)
- \frac{\varepsilon}{2}\,u\left(u_x^2 + u_y^2\right)
\right]\;dx\,dy .$ (12)

$\displaystyle u_{\mathbf{k}} =
\frac{1}{\sqrt{2\omega_{\mathbf{k}}}}
\left(
a_{\mathbf{k}} + a_{-\mathbf{k}}^{*}
\right)$ (9)

$\displaystyle p_{\mathbf{k}} =
- i \sqrt{\frac{\omega_{\mathbf{k}}}{2}}
\left(
a_{\mathbf{k}} - a_{-\mathbf{k}}^{*}
\right)$ (10)

$\displaystyle H_0
=
\sum_{\mathbf{k}}
\omega_{\mathbf{k}} \, \vert a_{\mathbf{k}}\vert^2$ (11)

$\displaystyle H_1
=
\frac{\varepsilon}{2}
\sum_{\mathbf{k}_1+\mathbf{k}_2+\math...
...f{k}_3}^{*}
+
3\,a_{\mathbf{k}_1} a_{\mathbf{k}_2} a_{\mathbf{k}_3}^{*}
\right)$ (12)

$\displaystyle V_{\mathbf{k}_1\mathbf{k}_2\mathbf{k}_3}
=
\frac{
k_{2x} k_{3x} +...
...\sqrt{
8\,\omega_{\mathbf{k}_1}
\omega_{\mathbf{k}_2}
\omega_{\mathbf{k}_3}
}
}$ (13)

$\displaystyle i \,\dot a_{\mathbf{k}}
=
\frac{\partial H}{\partial a_{\mathbf{k}}^{*}}$ (14)

$\displaystyle i \,\dot a_{\mathbf{k}}
=
\omega_{\mathbf{k}} a_{\mathbf{k}}
+
\v...
...{k}_1} a_{\mathbf{k}_2}
\,\delta_{\mathbf{k}-\mathbf{k}_1-\mathbf{k}_2}
+\cdots$ (15)

$\displaystyle u_{\mathbf{k}} =
\frac{1}{\sqrt{2\omega_{\mathbf{k}}}}
\left(
a_{\mathbf{k}} + a_{-\mathbf{k}}^{*}
\right)$ (9)

$\displaystyle p_{\mathbf{k}} =
- i \sqrt{\frac{\omega_{\mathbf{k}}}{2}}
\left(
a_{\mathbf{k}} - a_{-\mathbf{k}}^{*}
\right)$ (10)

$\displaystyle H_0
=
\sum_{\mathbf{k}}
\omega_{\mathbf{k}} \, \vert a_{\mathbf{k}}\vert^2$ (11)

$\displaystyle H_1
=
\frac{\varepsilon}{2}
\sum_{\mathbf{k}_1+\mathbf{k}_2+\math...
...f{k}_3}^{*}
+
3\,a_{\mathbf{k}_1} a_{\mathbf{k}_2} a_{\mathbf{k}_3}^{*}
\right)$ (12)

$\displaystyle V_{\mathbf{k}_1\mathbf{k}_2\mathbf{k}_3}
=
\frac{
k_{2x} k_{3x} +...
...\sqrt{
8\,\omega_{\mathbf{k}_1}
\omega_{\mathbf{k}_2}
\omega_{\mathbf{k}_3}
}
}$ (13)

$\displaystyle i \,\dot a_{\mathbf{k}}
=
\frac{\partial H}{\partial a_{\mathbf{k}}^{*}}$ (14)

$\displaystyle i \,\dot a_{\mathbf{k}}
=
\omega_{\mathbf{k}} a_{\mathbf{k}}
+
\v...
...{k}_1} a_{\mathbf{k}_2}
\,\delta_{\mathbf{k}-\mathbf{k}_1-\mathbf{k}_2}
+\cdots$ (15)