Fourier transform:

$\displaystyle X_k$ $\displaystyle =
\sum_{n=0}^{N-1}
x_n \, e^{-\,2\pi i\, kn/N},
\qquad
k=0,1,\dots,N-1 ,$ (1)
$\displaystyle x_n$ $\displaystyle =
\frac{1}{N}
\sum_{k=0}^{N-1}
X_k \, e^{\,2\pi i\, kn/N},
\qquad
n=0,1,\dots,N-1 ,$ (2)
$\displaystyle \sum_{n=0}^{N-1}
e^{\,2\pi i (k-\ell)n/N}$ $\displaystyle =
N\,\delta_{k\ell}.$ (3)

$\displaystyle \hat f(k)$ $\displaystyle =
\int_{-\infty}^{\infty}
f(x)\, e^{-\,i k x}\,dx ,$ (1)
$\displaystyle f(x)$ $\displaystyle =
\frac{1}{2\pi}
\int_{-\infty}^{\infty}
\hat f(k)\, e^{\,i k x}\,dk ,$ (2)
$\displaystyle \int_{-\infty}^{\infty}
e^{\,i (k-k') x}\,dx$ $\displaystyle =
2\pi\,\delta(k-k') .$ (3)