Problem 3: Convection with modified vertical acceleration

We consider the Boussinesq linear system with vertical momentum modified by the parameter $\alpha$:

$\displaystyle \alpha^2 \frac{D w}{D t} = -\frac{\partial \phi}{\partial z} + b,$ (25)

while the remaining linearized equations (about rest, constant stratification) are the usual ones:

$\displaystyle \frac{\partial u}{\partial t}$ $\displaystyle = -\frac{\partial \phi}{\partial x}, \qquad ($horizontal momentum$\displaystyle )$ (26)
$\displaystyle \alpha^2\frac{\partial w}{\partial t}$ $\displaystyle = -\frac{\partial \phi}{\partial z} + b, \qquad ($vertical momentum$\displaystyle )$ (27)
$\displaystyle \frac{\partial b}{\partial t} + N^2 w$ $\displaystyle = 0, \qquad ($buoyancy/stratification$\displaystyle )$ (28)
$\displaystyle \frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}$ $\displaystyle = 0. \qquad ($incompressibility$\displaystyle )$ (29)

Seeking plane-wave solutions $\propto e^{i(kx + mz - \omega t)}$, substitute derivatives: $\partial_t\mapsto -i\omega$, $\partial_x\mapsto i k$, $\partial_z\mapsto i m$.

From horizontal momentum:

$\displaystyle - i\omega u = - i k \phi \;\Rightarrow\; \phi = \frac{\omega}{k} u.$ (30)

From incompressibility: $k u + m w = 0\;\Rightarrow\; u = -\frac{m}{k} w$. Substitute into ([*]):

$\displaystyle \phi = -\frac{\omega m}{k^2} w.$ (31)

From buoyancy: $-i\omega b + N^2 w = 0 \Rightarrow b = \dfrac{N^2}{i\omega}w = -i\dfrac{N^2}{\omega} w$. From vertical momentum: $-i\omega\alpha^2 w = - i m \phi + b$. Substitute for $\phi$ and $b$ using ([*]):

$\displaystyle - i\omega\alpha^2 w$ $\displaystyle = - i m\left(-\frac{\omega m}{k^2} w\right) - i\frac{N^2}{\omega} w$ (32)
  $\displaystyle = i \frac{\omega m^2}{k^2} w - i\frac{N^2}{\omega} w.$ (33)

Multiply through by $-i$ and divide by $w$ (nonzero for waves) to obtain

$\displaystyle \omega \alpha^2 = -\frac{\omega m^2}{k^2} + \frac{N^2}{\omega}.$ (34)

Multiply by $\omega$ and rearrange:

$\displaystyle \omega^2\left(\alpha^2 + \frac{m^2}{k^2}\right) = N^2.$ (35)

Thus the dispersion relation is

$\displaystyle \boxed{\;\omega^2 = \dfrac{N^2 k^2}{\alpha^2 k^2 + m^2}\; }.$ (36)

This is the general dispersion relation for the modified vertical inertia parameter $\alpha$. Special cases:



Subsections