Summary

$\displaystyle \boxed{
u(x,t) = \sum_{n=1}^{\infty}
\Bigg[ \frac{2}{L} \int_0^L ...
...\sin\Big(\frac{n\pi x}{L}\Big) \, \exp\Big[-\Big(\frac{n\pi}{L}\Big)^2 t\Big]
}$ (10)

This is the classical solution of the 1D heat equation on a finite rod with zero Dirichlet boundaries.