a
b
Start bisection from
c
For the example the Newton formula is
d
For the example the Secant formula is
e Solutions are stated above, the example of bisection and Newton codes were provided during lectures. Good stopping criteria would be, for example,
a
Suppose is given, and we now how to calculate
, we
want to sove for
the equation
. In other words,
we want to find 0 of
. Then the Newtow formula
is indeed
b
We now need to evaluate , using only
function.
This gives
Similarly, to evaluate we use
c
Similarly, to calculate
, we use
Also, to calculate
, we use
a
To answer this question, please think about
convergence rates. If convergence rate is quadratic, as it is for
the Newtwon method, then the error is squared at each iteration.
Since the in the end of iterations, then in Method
one the error is
at first iteration,
at second and
at the third iteration. Since the error is squared, than
with out shadow of a doubt the first method is Newton iterations
b I would say that the Bisection is the Method 3, since
the error is halved at each iteration. Indeed, the error is
initially, then
, and then
which is
exactly a half at each iteration
c Method 3 can not be Secant, since the error is only halved at each iteration. Secant should converge faster, so I would guess that Secant is Method 2.
a
Approximating the function by a second degree polynomial,
we obtain
b The biggest disadvantage of this formula is that it has two
roots. This is natural, since the parabola may cross the axis in
two places. The second big disadvantage of this formula is that it
may not cross
at all, i.e. the quadratic equation may have no
real roots. Finally, the third big disadvantage is that the formula
contains
, i.e. one need to know analytically the second
derivative of
.
c
We need to chose a solution that is closest to the solution one
would obtain if were to be equal to zero. In other words,
one should choose a solution that is closest to the solution
obtained by the Newton method. By using the Taylor expansion, we see
that the correct choice is
“+” if
“-” if
In other words, the sign in front of the radical
should be the sign of . Then this formula will reduce
to Newton formula
(PLEASE MAKE SURE YOU CAN ACTUALLY SEE THIS!).
d The fastest way to derive the Halley method is to apply the Newton formula to the function
e Since the Newton formula is
(a)
Since
we get
b
If
(a) The Newton method
(b)
Using
with
c
Since
d
For the case of
, we write it as
, to obtain