Deriving $f\frac{\partial v}{\partial z}$:

Take $\frac{\partial}{\partial z}$ of the $x$-momentum equation (Eq. [*]):

$\displaystyle \frac{\partial}{\partial z}\left(-fv\right) = \frac{\partial}{\partial z}\left(-\frac{1}{\rho_0}\frac{\partial p}{\partial x}\right)
$

Again, assuming $f$ is independent of $z$:

$\displaystyle -f\frac{\partial v}{\partial z} = -\frac{1}{\rho_0}\frac{\partial}{\partial x}\left(\frac{\partial p}{\partial z}\right)
$

Substitute the hydrostatic relation (Eq. [*]) for $\frac{\partial p}{\partial z}$:

$\displaystyle -f\frac{\partial v}{\partial z} = -\frac{1}{\rho_0}\frac{\partial...
...tial x}\left(-\rho g\right) = \frac{g}{\rho_0}\frac{\partial \rho}{\partial x}
$

Substitute $\rho = \rho_0 + \rho'$ (where $\frac{\partial \rho}{\partial x} = \frac{\partial \rho'}{\partial x}$):

$\displaystyle -f\frac{\partial v}{\partial z} = \frac{g}{\rho_0}\frac{\partial \rho'}{\partial x}
$

Multiplying by $-1$:

$\displaystyle \mathbf{f\frac{\partial v}{\partial z} = -\frac{g}{\rho_0} \frac{\partial \rho'}{\partial x}}
$

This completes the derivation of the thermal-wind relation.